The Story of a Page

Rahul Iyer

Agenda

- The Page Descriptor
- The Various Page Lists
- The Evictor Interface
 - Kswapd
 - The Direct Reclaim Path
- The Life Cycle of a Page
- Conclusion

The Page Descriptor

- Defines a physical page
- One for every physical page in memory
- All global descriptors stored in the array mem_map[]
- Two 'list' fields
 - struct list head list
 - struct list head lru

I'm Lost... Where am I?

- Page can be part of 2 lists
- Through the list field
 - Example: Inode cache
 - Not of real interest to us
- Through the lru field
 - Part of the active/inactive list
 - Part of the slab allocator

The Evictor Interface

- The evictor basically has two parts to it
 - The kswapd 'page out' daemon
 - The Direct reclaim Path

The Page Out Daemon

- The kernel thread kswapd
- Executes the function kswapd()
- Created at startup
 - Created by kswapd init()
 - kswapd_init() is __init()
- Sleeps for the most part
- Woken up in cases of low memory
- Primary call path is balance pgdat()

The Page Out Daemon (Contd.)

- •balance pgdat() calls
 - shrink zone()
 - shrink slab()
- shrink_zone()
 - is the per zone page freer
 - Used by kswapd and Direct Reclaim
- shrink slab()
 - Shrinks the slab caches in the slab allocator
 - Used by both kswapd and Direct Reclaim

The Direct Reclaim Path

- This is when process try to free memory directly
 - the situation is desperate
- Bypass kswapd
- The main entry is try_to_free_pages()
- try to free pages calls
 - shrink_caches() calls
 shrink zone()
 - shrink_slab()
- May involve a call to the OOM killer

Life Cycle of a Page

- Page allocated using alloc_pages()
- Added to the inactive list or Slab cache
- On access, marked accessed by mark_page_accessed()
- Moved back to inactive list by refill_inactive()
- In low memory situations, reaped by kswapd or Direct Reclaim

Conclusion

- The evictor has two 'entry' points
- Deals closely with the Page cache
 - Means that Page cache structure will be altered
 - Hairy as the page cache is a cache of used pages + Buffer Cache
- Next Milestone figure our the call sites of all page cache functions